207 research outputs found

    Fine tuning of parameters of the universe

    Get PDF
    The mechanism of production of a large number of universes is considered. It is shown that universes with parameters suitable for creation of life are necessarily produced as a result of quantum fluctuations. Fractal structures are formed provided fluctuations take place near a maximum of the potential. Several ways of formation of similar fractal structures within our universe are discussed. Theoretical predictions are compared with observational data.Comment: 9 pages, 1 figur

    Physical Origin, Evolution and Observational Signature of Diffused Antiworld

    Get PDF
    The existence of macroscopic regions with antibaryon excess in the baryon asymmetric Universe with general baryon excess is the possible consequence of practically all models of baryosynthesis. Diffusion of matter and antimatter to the border of antimatter domains defines the minimal scale of the antimatter domains surviving to the present time. A model of diffused antiworld is considered, in which the density within the surviving antimatter domains is too low to form gravitationally bound objects. The possibility to test this model by measurements of cosmic gamma ray fluxes is discussed. The expected gamma ray flux is found to be acceptable for modern cosmic gamma ray detectors and for those planned for the near future.Comment: 9 page

    Quantum Instantons and Quantum Chaos

    Full text link
    Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.Comment: Extended version with new figures. Text (LaTeX), 5 Figures (epsi files

    The universe formation by a space reduction cascade with random initial parameters

    Full text link
    In this paper we discuss the creation of our universe using the idea of extra dimensions. The initial, multidimensional Lagrangian contains only metric tensor. We have found many sets of the numerical values of the Lagrangian parameters corresponding to the observed low-energy physics of our universe. Different initial parameters can lead to the same values of fundamental constants by the appropriate choice of a dimensional reduction cascade. This result diminishes the significance of the search for the 'unique' initial Lagrangian. We also have obtained a large number of low-energy vacua, which is known as a 'landscape' in the string theory.Comment: 17 pages, 1 figur

    Astrophysical constraints on primordial black holes in Brans-Dicke theory

    Full text link
    We consider cosmological evolution in Brans-Dicke theory with a population of primordial black holes. Hawking radiation from the primordial black holes impacts various astrophysical processes during the evolution of the Universe. The accretion of radiation by the black holes in the radiation dominated era may be effective in imparting them a longer lifetime. We present a detailed study of how this affects various standard astrophysical constraints coming from the evaporation of primordial black holes. We analyze constraints from the present density of the Universe, the present photon spectrum, the distortion of the cosmic microwave background spectrum and also from processes affecting light element abundances after nucleosynthesis. We find that the constraints on the initial primordial black hole mass fractions are tightened with increased accretion efficiency.Comment: 15 page

    Running Spectral Index and Formation of Primordial Black Hole in Single Field Inflation Models

    Full text link
    A broad range of single field models of inflation are analyzed in light of all relevant recent cosmological data, checking whether they can lead to the formation of long-lived Primordial Black Holes (PBHs). To that end we calculate the spectral index of the power spectrum of primordial perturbations as well as its first and second derivatives. PBH formation is possible only if the spectral index increases significantly at small scales, i.e. large wave number kk. Since current data indicate that the first derivative αS\alpha_S of the spectral index nS(k0)n_S(k_0) is negative at the pivot scale k0k_0, PBH formation is only possible in the presence of a sizable and positive second derivative ("running of the running") βS\beta_S. Among the three small-field and five large-field models we analyze, only one small-field model, the "running mass" model, allows PBH formation, for a narrow range of parameters. We also note that none of the models we analyze can accord for a large and negative value of αS\alpha_S, which is weakly preferred by current data.Comment: 26 pages, 5 figures, Refs. added, Minor textual change; version to appear in JCA

    Primordial Structure of Massive Black Hole Clusters

    Full text link
    We describe a mechanism of the primordial black holes formation that can explain the existence of a population of supermassive black holes in galactic bulges. The mechanism is based on the formation of black holes from closed domain walls. The origin of such domain walls could be a result of the evolution of an effectively massless scalar field during inflation. The initial non-equilibrium distribution of the scalar field imposed by background de-Sitter fluctuations gives rise to the spectrum of black holes, which covers a wide range of masses -- from superheavy ones down to deeply subsolar. The primordial black holes of smaller masses are concentrated around the most massive ones within a fractal-like cluster.Comment: 19 pages; 3 figures; The final version accepted for publication in Astroparticle Physic

    A straw drift chamber spectrometer for studies of rare kaon decays

    Full text link
    We describe the design, construction, readout, tests, and performance of planar drift chambers, based on 5 mm diameter copperized Mylar and Kapton straws, used in an experimental search for rare kaon decays. The experiment took place in the high-intensity neutral beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, using a neutral beam stop, two analyzing dipoles, and redundant particle identification to remove backgrounds

    Brans-Dicke Theory and primordial black holes in Early Matter-Dominated Era

    Full text link
    We show that primordial black holes can be formed in the matter-dominated era with gravity described by the Brans-Dicke theory. Considering an early matter-dominated era between inflation and reheating, we found that the primordial black holes formed during that era evaporate at a quicker than those of early radiation-dominated era. Thus, in comparison with latter case, less number of primordial black holes could exist today. Again the constraints on primordial black hole formation tend towards the larger value than their radiation-dominated era counterparts indicating a significant enhancement in the formation of primordial black holes during the matter-dominaed era.Comment: 9 page

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change
    • …
    corecore